The generator matrix 1 0 0 1 1 1 3X+2 3X 1 1 3X 1 1 1 X+2 3X 1 2X+2 1 0 1 2 2 1 1 3X+2 1 1 1 1 3X+2 0 1 3X 1 2X 1 1 3X+2 X 1 1 1 2X X 2X+2 1 1 X 3X 1 1 2 1 X+2 0 1 2X 1 2X+2 1 1 1 1 0 1 1 2X 1 1 1 1 1 X 1 2X 1 3X+2 1 3X+2 1 1 X 1 3X+2 2X 1 1 1 1 1 1 1 0 1 0 0 3 X+1 1 2 3X 3 1 2 3 3X+2 1 1 1 3X 3X+2 1 X+1 1 1 3X+3 2X 3X 3X+1 X+2 3X 3X 1 2X 0 1 3X+3 1 3 X+3 1 X+2 2X 2X+2 2X+3 2X+2 3X+2 1 X+1 X+2 1 1 0 X 1 2X+2 1 1 X+2 X+2 3X+3 1 2X+1 2X+1 3X+2 X X+2 3X+3 0 1 3X+1 2X+2 1 3X+3 3 1 X 0 3X+2 2X 2X+1 1 X+1 3X+2 1 X+2 X+2 1 X 3X 2X X+2 3 3X+1 0 0 0 1 1 1 0 3 1 3X 3X X 3X+1 3X+3 2X 3X+3 2X 2X 1 3 3X 3 2X+3 X+1 X+3 3X 1 X+2 3X+1 2X+1 X 3X 1 2 3X+1 0 2 X+3 2X+1 2X+1 1 1 3X+2 2 1 1 2X+1 3X 3X+2 X 2X+2 2X+1 2X 3X+1 X+1 3X+3 3X+2 1 1 2X+3 2X+2 3 3X+2 X+3 2X+1 1 3X+3 2X X+2 2 3X+2 3X 2X+3 3X+1 0 2X+3 1 X+3 1 2X 2X+2 3X 2X+3 2 0 1 2 3X+2 2X+2 2X+1 X+1 2 3X+3 2X+2 0 0 0 X 3X 2X 3X X 2 2X+2 2 3X+2 3X+2 0 X+2 0 2X 3X X 2X+2 3X+2 3X+2 X X 0 X+2 2X 3X 3X+2 2X 2X 3X 2 X X+2 X 2X 0 2 2X 2X+2 3X X 2X+2 2 2X+2 X X+2 3X+2 X+2 2X 3X 2X+2 2X 2X X+2 0 3X+2 2X+2 X 0 3X 2X+2 2 2 2 X 2X+2 X 0 2X+2 0 X 3X+2 3X 3X+2 0 3X+2 2X+2 X 3X 2 2 2X+2 3X+2 2 X 2X 2 2X 3X+2 3X+2 2X+2 generates a code of length 93 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 86. Homogenous weight enumerator: w(x)=1x^0+249x^86+796x^87+1757x^88+2322x^89+3041x^90+3580x^91+3556x^92+3568x^93+3359x^94+3004x^95+2368x^96+1920x^97+1469x^98+706x^99+552x^100+214x^101+98x^102+104x^103+45x^104+22x^105+11x^106+18x^107+2x^109+4x^110+1x^112+1x^114 The gray image is a code over GF(2) with n=744, k=15 and d=344. This code was found by Heurico 1.16 in 16.6 seconds.